
J. Fluid Mech. (1993), vol. 255, pp.  195-211 
Copyright D 1993 Cambridge University Press 

195 

Experiments on wave breaking in stratified flow 
over obstacles 

By I A N  P. CASTRO’ AND WILLIAM H. SNYDER2? 
Mechanical Engineering Department, University of Surrey, Guildford, Surrey, GU2 5XH, UK 

Atmospheric Sciences Modeling Division, Air Resources Laboratory, National Oceanic and 
Atmospheric Administration, Research Triangle Park, NC 2771 1, USA 

(Received 19 October 1992 and in revised form 13 April 1993) 

Towing-tank experiments on linearly stratified flow over three-dimensional obstacles 
of various shapes are described. Particular emphasis is given to the parameter regimes 
which lead to wave breaking aloft, the most important of which is the Froude number 
defined by 4 = U/Nh,  where U, N and h are the flow speed, the Brunt-Vaisala 
frequency and the hill height, respectively. The effects of other parameters, principally 
K (= ND/nU,  where D is the fluid depth) and the spanwise and longitudinal aspect 
ratios of the hill, on wave breaking are also demonstrated. It is shown that the Froude- 
number range over which wave breaking occurs is generally much more restricted than 
the predictions of linear (hydrostatic) theories would suggest; nonlinear (Long’s 
model) theories are in somewhat closer agreement with experiment. The results also 
show that a breaking wave aloft can exist separately from a further recirculating region 
downstream of the hill under the second lee wave, but that under certain circumstances 
these can interact to form a massive turbulent zone whose height is much greater than 
h. Previous theories only give estimates for the upper critical 4, below which breaking 
occurs; the experiments also reveal lower critical values, below which there is no wave 
breaking. 

1. Introduction 
It is well known that uniformly stratified flow over obstacles can lead to stationary 

lee waves which under certain circumstances can break, generating regions of intense 
turbulence and, sometimes, considerable increase in drag. Such flows have been clearly 
seen experimentally, both in the field and in the laboratory, and also in some numerical 
studies. There are currently no complete analytical theories that are able to deal with 
flows that include wave-breaking regions. In one of the more recent reviews of research 
on airflow over mountains, Smith (1989~) points out that the mountain geometries and 
upstream stratification parameters that lead to stagnation, either on the hill surface or 
aloft, are not yet well delineated. Apart from his own extension of linear, hydrostatic 
theory to the three-dimensional case (elliptical hills of specified shape) nearly all the 
published values of critical Froude number for which vertical streamlines first occur 
have been derived from non-linear calculations for two-dimensional obstacles of 
various shapes (using Long’s model, e.g. Long 1953). Thus Huppert & Miles (1969), 
for example, showed that for flows unbounded above, Long’s model for uniformly 
stratified flow over a semi-ellipse predicts overturning when I;hc falls below 1.49, in the 
hydrostatic limit of a very long ellipse. Here, & is the Froude number (= U/Nh,  where 

7 On assignment to the Atmospheric Research and Exposure Assessment Laboratory, US 
Environmental Protection Agency, Research Triangle Park, NC 2771 1, USA. 
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U is the upstream velocity, h is the obstacle height and N is the Brunt-Vaisala 
frequency, [( -g/p,) ap/az];, and the suffix c refers to the critical value at which vertical 
streamlines first appear, with 4 decreasing. For the other extreme of body shape - a 
normal flat plate - they found & = 0.58. Likewise, they found that for a ‘Witch of 
Agnesi’ body, i.e. one whose height is specified by n = 1 in: 

h(x)  = h,/[l+ (x/a,)21n, (1) 
where h, is the maximum body height, the result for h,+O is & = 1.18 (Miles & 
Huppert 1969). Smith (1989b) found, using a linear, hydrostatic theory that if n = 
then &c = 1.72. And, to quote an early example of a numerical approach, Lilly & 
Klemp (1979) found that for a continuous sequence of sine-shaped hills & = 0.75. 
They were perhaps the first authors to show, using a numerical method, that the critical 
Froude number depends significantly on the particular cross-sectional shape of the hill. 

In the case of three-dimensional obstacles, it is known that & depends on the 
spanwise extent of the obstacle. Linear, small-perturbation theory showed long ago 
that, for a bell-shaped hill, lee-wave amplitudes increase as the spanwise aspect ratio 
(width/height) increases (e.g. Crapper 1962) and, more recently, similar theoretical 
considerations have indicated how Gc depends on the spanwise aspect ratio of a hill 
whose shape is defined by the three-dimensional version of (1) above, with n = (Smith 
1986b). Of course, linearization becomes locally invalid as stagnation approaches, so 
the results of such theoretical work can only be a first approximation. This is 
emphasized by Smith’s rather surprising result that the value of l$c is virtually 
insensitive to the value of n (for 1 < n < 4, at least), which seems at odds with 
implications from the two-dimensional literature noted above. To quote Smith (1989 a) : 
‘linear theory estimates are not sufficiently accurate to serve as a foundation for future 
research’. Laboratory studies have also demonstrated the effect of spanwise aspect 
ratio. One of our own experiments, for example, showed that for a triangular-shaped 
obstacle the range of 4 for which wave breaking occurred increases with increasing 
spanwise aspect ratio (Castro 1987). The results were shown to be qualitatively 
consistent with linear theory but it was emphasized that the wave-breaking bounds (in 
terms of the locus of J;hc in the &/aspect-ratio plane) would depend on the particular 
hill shape. 

Rottman & Smith (1989) have reported a series of nominally two-dimensional 
experiments designed to test how well numerical simulations (like those of Clark & 
Peltier 1977; Durran 1986; and Bacmeister & Pierrehumbert 1988) and the nonlinear 
hydrostatic theory of Smith (1985) compare with real linearly stratified flow over 
obstacles. In the latter theory a wave-breaking region is assumed to exist and the flow 
below this region is analysed on the basis of hydraulic ideas. Rottman & Smith were 
particularly concerned with the possible sensitivity of the downslope winds resulting 
from wave breaking to violations of the idealized flow assumptions made in the theory. 
Their work was the first systematic laboratory study of severe downslope winds but no 
attempt was made to study the effect of hill shape (rather than height) on the range of 
& leading to wave breaking. 

The issue of wave breaking is important, at the very least because of its effects on 
downslope winds (as already noted), surface drag, and the current uncertainties in 
handling such relatively fine-scale details in atmospheric circulation models. It would 
therefore clearly be helpful to have a rather better quantitative understanding of the 
ways in which obstacle shape affects the wave field. This can only come via numerical 
and/or laboratory experiments. The latter are also needed as part of the validation 
process for the former. We have therefore undertaken a range of physical experiments, 
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using a number of different obstacle shapes and spanwise aspect ratios, complementing 
the initial work on triangular bodies mentioned earlier and the work of Rottman & 
Smith (1989). The specific intention was to delineate the range of F, that, for each body, 
gave rise to wave breaking aloft. This paper presents the results. In all the experiments 
the fluid was linearly stratified and the mean flow upstream was uniform. Then, 
assuming that the Reynolds number is sufficiently high that variations in it will be 
unimportant, the major parameters are (in the case of infinite domain depth) the 
Froude number, F,, and geometrical parameters like W/h and L/h, where Wand L are 
the spanwise width and axial length of the hill. In some circumstances it may be more 
appropriate to consider alternative parameters formed via suitable combinations of 
these - & = U/NL, for example, when considering the position of separation in the lee 
of the hill (see Hunt & Snyder 1980). Note that for general three-dimensional hills 
many more than two geometrical parameters are needed to specify the shape 
completely and some may be important. Surface slope, for example, is likely to be 
dominant in terms of the occurrence of surface flow separation in the lee. However, in 
this paper we have chosen to concentrate largely on the effect of variations in W/h and 
L/h, since it is these that seem dominant in affecting wave breaking aloft. 

In laboratory experiments there is an additional parameter that may govern the 
nature of the lee-wave field. The flows are always bounded above the obstacle (by either 
a solid surface or a free liquidlair interface) so that, defining the flow depth by D, the 
particular value of K = ND/nU can be important unless the obstacle height satisfies 
h/D % 1. Long’s model solutions for finite-depth cases certainly suggest substantial 
variations in FhC with h /D,  although some limited data obtained by Baines (1977) 
indicate that such solutions are not realistic; nonetheless, Baines’ data show that h/D 
might be important for h/D > 0.15. In comparing the present results with theoretical 
results like those quoted above, it is therefore important to consider the possible 
influence of K (or, equivalently for fixed 4, the obstacle ‘blockage’ ratio h/D); some 
experiments were undertaken specifically to assist in this process. 

A variety of different hill shapes and orientations were used in the experiments and 
in each case the Froude number was varied over a wide range, including the range in 
which wave breaking might be expected to occur. Smith’s (1989 b) three-dimensional 
result appears to be the only one in the literature that gives hC as a continuous function 
of spanwise aspect ratio, so two of the bodies used in the experiment were defined by 
the three-dimensional equivalent of equation (1) with n = %, as used by Smith. Other 
bodies had either lower or greater surface slopes; details are given in 92, along with 
other pertinent features of the experimental arrangements. In 9 3 the major experimental 
results are presented and discussed, and compared with the current theories and 
numerical experiments. In the final section the results are summarized and the major 
conclusions drawn. 

2. Experimental arrangements 
All the experiments were undertaken in the large towing tank at the USEPA Fluid 

Modeling Facility. Stratification was achieved in the usual way with salt; further 
details are given in Thompson & Snyder (1976). Initially linear density profiles were 
generated and then maintained by syphoning off the upper few centimeters after every 
few tows, although small changes in the density gradient in a region less than half the 
hill height in thickness were accepted since these did not change the Froude number in 
the bulk of the flow over the hill. When the upper few centimeters were removed 
corresponding layers of appropriate density were introduced at the bottom of the tank. 
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Height Aspect ratio Max. slope 
Hill h, (cm) u = W / L  #?= W/h, L/h, W / T  (deg.) 
CCBl 16.1 0.49 4.85 9.9 0.325 24 
CCB2 15.8 1 .oo 4.85 4.85 0.320 24 
CCB3 16.1 2.04 9.90 4.85 0.660 24 
SM1 10.0 0.33 1.96 5.86 0.082 34 
SM2 10.0 1 .oo 1.96 1.96 0.082 34 
SM3 10.0 3.00 5.86 1.96 0.245 34 
COSl 10.0 1 .oo 1.78 1.78 0.074 40 
c o s 2  10.0 2.34 4.18 1.78 0.174 40 
COS3 10.0 3.70 6.59 1.78 0.275 40 
COS4 10.0 6.40 11.4 1.78 0.475 40 

TABLE 1 .  Geometrical parameters of the hills. Bodies with a = 1 are axisymmetric, W and L are the 
spanwise width and axial length at the half-height points, respectively, and COS4 is the steep hill used 
by Rottman & Smith (1989). (column 6) is the spanwise width of the tank. 

A number of different obstacles were used. Most of these were adaptations of models 
used in previous studies, but two new models were constructed specifically for this 
study. These were of the general shape defined by the three-dimensional equivalent of 
equation (1) with n = & i.e. 

(This was the shape used by Smith 1989a in his analytical study.) One model was 
axisymmetric with h,  = 10 cm and a, = ay = 12.75 cm, giving a maximum surface 
slope of 34". The other had the same h, and a,, but with aJa,  = 3. A second family 
of hills had a shape similar to that used in the experiments of Snyder et al. (1989, which 
was an idealized version of Cinder Cone Butte (an isolated hill in Idaho). The 
axisymmetric version used in those earlier experiments was specified by 

with h,  = 15.5 cm, c = 1 cm and a, = 38.8 cm. An elongated version was constructed 
by inserting a central section of the same cross-sectional shape and of length 78.4 cm. 
Defining the aspect ratio, a = W/L, as the ratio of the spanwise width ( W )  at the half- 
height point to the axial length (L) at the half-height point gives this latter body an 
aspect ratio of two, compared with a = 3 for the 'Smith' hill described above. The 
longer hills of both shapes were also used with their long axes parallel to the towing 
direction, yielding a = 0.5 for the elongated Cinder Cone or 0.33 for the 'Smith' hill. 
A third class of hills used had cross-sectional shapes defined by 

with h, = 10.4 cm, L = 18.5 cm. This gives a maximum slope of 40" and corresponds 
to the 'steep' hill used by Rottman & Smith (1989). In the latter study the central 
section was 100 cm in span (W,) and the two ends were simply the same cross-sectional 
profile rotated through 180". In the present study three additional hills of this type were 
used, having W,  = 50,25 and 0 cm. The third was therefore an axisymmetric case. The 
hills will henceforth be designated SM (for the 'Smith' hills), CCB (for the Cinder- 
Cone Butte models) and COS (for the cosine-shaped hills), and are given numbers in 
order of increasing spanwise aspect ratio, a. Hence the Smith hills, for example, are 
SM1, SM2 and SM3, with SM2 being the axisymmetric case and SMl and SM3 the 
cases with the longer dimension parallel and normal to the flow, respectively. Table 1 
gives the salient details of each hill and includes the ratio of hill width to channel 

h(x) = h,/[l/ + (x/a,>2 + (Y/a,>"l". 

h(r) = (h,  + c)/[(l + (r/a,J4] - c,  h(r) = 0 for r > 77.5 cm, 

h(x) = ;hm[ 1 + cos (nx/L)], 
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FIGURE 1. General experimental arrangement. 

width ( W/ K) ; the possible influence of this parameter is discussed later. Figure 4(b)  
shows the mid-span cross-sections of each hill and is included to aid later discussion. 

The models were mounted in turn on a baseplate and towed upside down at the 
water surface with the baseplate immersed by about 5 mm. Details of the arrangements 
are essentially identical with those of Rottman & Smith (1989); figure 1 shows the 
general set-up. All discussion is in terms of an inverted laboratory vertical coordinate 
(i.e. as if the body were the right way up with all flow above its surface). The flow was 
visualized using dye streamers, which correspond to streamlines in cases where the flow 
was essentially steady. These were emitted from a rake of tubes well upstream of the 
model and tailored to ensure that each streamer was neutrally buoyant at its point of 
release. 

Video and still pictures were obtained throughout each tow using cameras mounted 
at the side of the channel and moving with the carriage. The number of streamers and 
their locations were varied to suit the anticipated flow in each case, with particular care 
taken to ensure that there were two or more streamers above any wave-breaking 
region, in addition to a number at lower elevations. 

For each hill a series of tows was performed, consisting of a sequence of Froude 
numbers spanning either the range over which wave breaking occurred or, if it did not, 
the range within which the wave amplitudes reached their maximum. Most tows were 
undertaken with a total water depth around 1 m, but a few series used significantly 
lower depths (80 or 50cm) in order to assess the influence of the parameter 
K (= ND/n:U). 

3. Results and discussion 
3.1. Wave-breaking regimes 

Very many tows were undertaken and it would not be appropriate to present all the 
resulting photographs. Instead, just a few examples will be given to demonstrate the 
major features and we will present the essential results in graphical form using data 
deduced from the flow visualization. Figure 2 shows a set of photographs from the 
tows using COS3, spanning the K-range at which wave breaking first starts (as J;h is 
reduced) and then stops. Several features are evident. In figure 2(a) (4 = 0.8) it is clear 
that wave-breaking does not occur aloft, but the flow separates under the first lee-wave 
crest, leading to a downstream separation zone which almost matches the hill shape. 
There also seems to be a further separation region underneath the second lee-wave 
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FIGURE 2. Sequence of photographs for the flow over COS3: (a) F, = 0.8; (b) 0.7; (c) 0.6; (d )  0.2; 
(e)  0.15; ( f )  0.1. 

crest. In this case K was around 3;  for larger D / h  (i.e. larger K )  the wave amplitude 
would decay more rapidly with distance downstream, so this region would perhaps 
disappear. Note that there is no separation from the lee of the hill itself; the later 
separation (occurring at about x = $A where h is the wavelength ( 2 7 4 h )  and x is 
measured from the hill crest) is controlled by the lee-wave field, not by the Reynolds 
number, which ranged from about 1300 at the lowest 4 and smallest hills to about 
20000 at the highest 4. Hunt & Snyder (1980) give a more detailed discussion of the 
circumstances that lead to surface separation. As F, is reduced the wave-length falls so 
that the downstream separation region moves nearer to the hill (figure 2b, & = 0.7). 
Simultaneously the waves steepen and break, so that there is a clear breaking region 
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FIGURE 3 .  Sequence of photographs for the flow over COSl : (a) F, = 0.4, (b)  0.3; COS2: (c) 
F, = 0.7, ( d )  0.6; SM2: (e) 4 = 0.4; SM3: ( f )  0.4. 

aloft, which remains quite distinct from the separated zone under what would be the 
lee wave crest if breaking had not occurred. In circumstances where wave breaking 
occurred this distinction between the breaking region and a surface separation region 
was a common, but not universal, feature of the flow. As the Froude number is reduced 
further, figure 2(c) (4 = 0.6) shows that these two, previously distinct, turbulent 
regions merge, leading to what in the past (e.g. Hunt & Snyder 1980) may have been 
termed an ‘internal hydraulic jump’. 

The flows in all these cases were essentially steady throughout the tow. In the 
corresponding cases (COS4) studied by Rottman & Smith (1989), they found that at 
8 = 0.7 and 0.8 breaking occurred only intermittently, with the well-mixed region 
disappearing between each episode of wave breaking. The implication is that in this 
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case of a somewhat wider hill the flow was, in fact, unsteady at those Froude numbers. 
Castro, Snyder & Baines (1990) have demonstrated the possibility of periodic 
unsteadiness in the wave field (and the corresponding surface drag); this most readily 
occurs for two-dimensional obstacles but wide three-dimensional obstacles can lead to 
similar behaviour. Indeed, the wide cosine-shaped hill used by Castro et al. was 
marginally less wide than COS4 and yielded noticeably unsteady, periodic drag 
variations for F, near 0.7. This point will be discussed further in due course. 

Figure 2(d-f)  shows the flow at the lower end of the Froude-number range. Breaking 
occurs at F, = 0.2 and perhaps at two different heights at F, = 0.15, but not at all at 
4 = 0.1. Rottman & Smith (1989) did not study 8 < 0.2 but the existence of a lower 
critical Froude number, below which breaking does not occur, has previously been 
demonstrated in the case of triangular hills (Castro 1987). It must be said, however, 
that it was not always easy to decide whether or not breaking occurred at these lowest 
Froude numbers. At F, = 0.1, for example, the wavelength was significantly less than 
the hill height, so in some cases wave amplitudes of the same order as the thickness of 
the dye streamers could have lead to unnoticed wave breaking. It is possible that the 
location (or even existence) of this lower boundary eC is determined by viscous 
processes (P. G. Baines, private communication) ; further work would be necessary to 
pursue this, but we believe that, whatever the Reynolds number, wave breaking must 
cease at sufficiently low F,, since increasingly strong stratification greatly inhibits 
vertical motions. 

For the same (cross-sectional) shape hill, reduction in the spanwise width led to a 
decrease in the upper critical Froude number. Figure 3 shows examples of the flow 
fields for COS1, COS2, SM2 and S M 3 .  Note that for COSl, the axisymmetric case, 
wave breaking only occurred at F, = 0.3, in the sequence I$ = 0.2, 0.3, 0.4 and 0.5 (cf. 
figure 3a, b) and, for COS2, wave breaking was marginal for F, = 0.7 (figure 3c). At 
6 = 0.6, in contrast to the COS3 result (figure 2c), the two recirculating regions 
remained quite distinct (figure 3 d ) ,  even though surface separation occurred around 
the base of the hill (x = ;A = 1.9h). Maintaining the aspect ratio but reducing the hill 
slope also sometimes led to a reduction in the (upper) critical Froude number. SM3, 
having a surface slope of 34" and an aspect ratio of a = 3 ,  generated wave breaking but 
over a smaller Froude-number range than COS3, which had a slope of 40", despite the 
fact that COS3 had a rather lower 01 (2.34). However, this trend was not universal, as 
discussed later. Figures 3(e) and 3 d f )  compare the flow fields for SM2 and SM3 at 
F, = 0.4, emphasizing the fact that as the spanwise aspect ratio increased wave 
amplitudes also increased. 

These and all the other results are summarized in figure 4(a), where the critical 
Froude number is plotted for each hill shape as a function of aspect ratio. In each case 
the symbols mark Froude numbers for which wave breaking definitely occurred and 
the vertical bars drawn from the symbols cover the range of uncertainty, within which 
wave breaking may occur. Sometimes these simply extend halfway to the next F, value 
tested, if at that 4 breaking clearly did not occur. Otherwise they are longer, denoting 
that at the next F, in the sequence breaking occurred either late in the tow (where wave 
reflections may have become influential), or earlier in the tow before disappearing later. 
Points corresponding to Rottman & Smith's (1989) COS4 results are included in the 
figure, along with the data previously obtained for a triangular ridge (Castro 1987), 
and smooth curves are drawn through the data as an aid to clarity. Despite the 
inevitable uncertainties over precisely when steady wave breaking sets in, it is clear that 
each obstacle shape (shown in figure 4b)  generates its own 'envelope', within which 
breaking occurs. 
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FIGURE 4. (a) Variation of critical Froude number with aspect ratio. A, CCB; 0, COS; 0,  SM; 0, 
triangular bodies (Castro 1987). 0, COS4 (Rottman & Smith 1989). Figures in square brackets 
denote values of p = W/h, at a = 4. Lines through data points are for clarity only. Solid line (i) is 
three-dimensional theory from Smith (19893); (ii) Miles & Huppert (1969), ellipse (hydraulic limit); 
(iii) Huppert & Miles (1969), Agnesi hill; (iv) Miles & Huppert (1969), flate plate. Lines (ii-iv) are for 
two-dimensional, a = co, cases. (3) Hill shapes, to scale with distances normalized by hill height. 
Symbols refer to those used in (a). 

An immediate point to emphasize from figure 4(a) is that the trend of increasing 
envelope area (wider wave breaking & range at given a) is not generally monotonic 
with hill slope, despite the example mentioned earlier. Indeed, the hills with the lowest 
slope (CCB) are the most susceptible to wave breaking. However, the trend is 
monotonic with increasing aspect ratio, p, if the latter is defined as spanwise width/hill 
height (Wlh,). To make this clear, the values of /3 appropriate to each hill at a 
particular value of a (a = 4)  are included as bracketed values on the figure. Note that 
for the triangular hill at a = 4, ,8 = 4 just as for the SM hill at the same a, but wave 
breaking occurs over a much smaller range of 4. However, separation occurred at the 
top of the triangular hill and there was a large recirculation region downwind, so that 
the eflective a: (considering this region as an extension of the length, L, of the body) is 
less than the geometrical value used in figure 4(a) .  The data show that as ,4 increases, 
the wave-breaking range increases for a given a and this trend would seem to be 
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independent of hill slope. This is not surprising, since a particular hill slope is not 
linked directly with the spanwise width, except for axisymmetric hills. Emphasis on hill 
slope can therefore be misleading and, in considering wave-breaking bounds in 
practical cases, it is much more important to know a; and /3 ( W / L  and W/h,). 

A further point to note from figure 4(u) is that any changes in the lower critical 
Froude number with hill shape, or indeed with 01 for a; > 4, are not discernable above 
the experimental uncertainties (except in the case of the triangular hills, which are 
anyway somewhat anomalous because of the relatively large separation zones, as 
indicated above). This is, perhaps, not surprising; in the limit of zero 4 the flow around 
three-dimensional obstacles occurs in horizontal planes, is effectively decoupled from 
the flow above, and depends on W only via its effect on the Reynolds number, W U / v .  
The lower critical F, is almost uniformly in the range 0.1-0.2. 

It is pertinent to ask at this point whether these general results are likely to be 
affected by the inevitable flow constriction caused by the tank sidewalls. This is clearly 
more likely to be the case for the larger W/ values and in cases of very low 4, when 
the flow is more constrained to move horizontally. One would expect sidewall influence 
to be qualitatively equivalent to an increase in spanwise width of the hill - forcing more 
flow over rather than around the hill. This would presumably lead to larger wave 
amplitudes and an increase in &. It is instructive to consider the results for the two 
cases of largest W/ 4 - CCB3 and COS4 (see table 1). Figure 4(a) shows that in these 
two cases there is no sudden increase in K e  and, if the effect increases with W/ Ft( (which 
it must) and is significant, the true (infinite 4) locus of the K e  boundary would be 
somewhat lower and flatter than the results indicate. This may be the case but the effect 
is unlikely to remove the significant differences between the different hill shapes, nor the 
differences between experiment (for the Smith hills) and the linear theory. Indeed, it 
would increase the latter. 

All the cases discussed thus far used a nominal water depth, D, of 1 m, so that the 
hill height was only 0.1D (0.15D in the case of the CCB hills). Whilst this might be 
thought sufficiently small to imply only weak effects from the upper boundary, it 
should be noted that h = 0.1D implies K = ND/.nU = 3.2 at F, = 1.0, so that only a 
relatively small number (Int(K)) of discrete wave modes can exist. Further, since 
K >  1 for all the experiments, upstream wave motions can occur, although they will 
generally be weak in view of the three-dimensional nature of the hills (Castro & Snyder 
1990). In addition, most of the theoretical work has considered the infinite-depth case, 
so a few further tests (with smaller water depths) were undertaken to assess the 
influence of h /D.  These used the CCB3 and the COS2 hills and figure 5 summarizes the 
results. Over the range of h / D  for which data are available, the changes in hC are not 
large, but they could be interpreted as implying rather larger changes for small 
h / D  ( h / D  < 0.1). However, this would be at variance with the deductions of Baines 
(1 977) - his data for FhC as a function of h / D  in the case of a ‘Witch of Agnesi ’ hill are 
included. These were deduced from his nh /D us. K plot of the stability boundary 
derived from a very limited number of data points (Baines’ figure 1). The results do not 
at first sight seem consistent with the present data, since it is difficult to see why flow 
over the Agnesi hill should be so much more sensitive to h / D  (once h / D  > 0.15) than 
that over our CCB3 or COS2 hills. However, Baines’ hill was two-dimensional and 
such ‘blockage’ effects will certainly be greatest in the two-dimensional case. 
Furthermore, some of the flows may well have been unsteady. Baines’ data do at least 
agree with the physically plausible argument that changes in F, with h / D  will be smaller 
at low than at high h/D.  We tentatively conclude that GC values for the infinite-depth 
case will be no more than about 25 % greater than those shown in figure 4(u), for all 
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FIGURE 5. Critical Froude number as a function of domain depth. 0, COS2; 0, CCB3. Solid 
line is deduced from Baines (1977), for flow over a two-dimensional ‘Agnesi’ hill. 

hill shapes. Nonetheless, this effect must be borne in mind when comparing the results 
with theoretical predictions, and data for h /D < 0.1 would certainly be useful. The 
required experiments would not be easy if the Reynolds number (which falls as h falls) 
were to be kept sufficiently high to minimize its effects. 

3.2. Comparisons with theory 
The various analytical and numerical calculations of F,, discussed in $1 are included 
in figure 4(a). Note first that Smith’s (1989b) linear theory predicts &: larger by a 
factor of more than two at 01 = 2. In the present experiments no SM hill with a = 2 was 
available, but for 01 = 3 eC is about 0.6, compared with the 1.4 predicted by the theory. 
At a = 1 breaking occurred over a very limited range between about F, = 0.25 and 
0.35, whereas the theory predicts a critical Froude number of about 0.75. The small 
increases in F,, with decreasing h / D  (figure 5 )  cannot account for this discrepancy and 
it must be concluded that nonlinear effects lead to a significant reduction in wave 
amplitudes. This was recognized by Smith, who pointed out that the nonlinear Long’s 
model for the ‘Witch of Agnesi’ hill with a = 00 gives F,, = 1.18 (cf. Smith’s 1.72) and 
the numerical computation of Smolarkiewicz & Rotunno (1989) for a SM2 hill gave 
&c = 0.56 (cf. Smith’s 0.75); these values suggest that the linear theory overpredicts eC 
by around 30%. Our experiments suggest that the error is even larger. 

Whilst there are obvious discrepancies at finite a, figure 4 seems to indicate that the 
nonlinear theories for 01 = co may represent reasonable asymptotic limits. Despite the 
fact that the theory cannot account for flow separation behind the obstacle, the flat- 
plate result for F,, = 0.58 is close to the asymptotic trend of the experimental data for 
the hill most like a flat plate - the triangular bodies used by Castro (1987). As the hill 
gets longer in the axial direction, the asymptotic &c certainly rises, as it does in the 
theory. An alternative way to present the data in figure 4 is to cross-plot it in the form 
of F,, as a function of L/h,  (an aspect ratio based on axial length and hill height). This 
is done in figure 6 and the results are compared with the results of Huppert & Miles’ 
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FIGURE 6. Critical Froude number a function of axial aspect ratio, L/h,. Lines are contours of 
constant a deduced from the data in figure 4(4 ,  with values of a given on the right. The a = cc line 
is the Huppert & Miles (1969) result for an elliptical hill. 

(1969) nonlinear (two-dimensional) analysis for an elliptical hill. We have chosen to 
plot the data as contours of constant a; the theoretical results correspond to a = co. For 
a < 03 the contours are deduced from smoothed curves drawn through the 
experimental data points shown in figure 4. The nonlinear theory does seem to provide 
a reasonable asymptotic (a = co) upper bound on the critical Froude numbers. 

It must be emphasized that if the hill is wide enough in the spanwise direction 
(a > 4 in the present context) our previous work has demonstrated that the flows are, 
in fact, unsteady (Castro et al. 1990); periodic, roughly sinusoidal variations in wave 
amplitude and obstacle drag occur on a relatively long timescale. As noted earlier, the 
COS4 results of Rottman & Smith (1989) also seemed unsteady, as would be expected 
from this earlier work. This is obviously not a feature that can be captured by (linear 
or nonlinear) theories based on steady flow equations. However, that it is not some 
artifact of the experimental technique has now been independently demonstrated via 
time-dependent numerical computations using the full (laminar) Navier-Stokes 
equations (Paisley & Castro 1992). It has also more recently been shown to occur at 
high Reynolds numbers, when the computations used a simple turbulence model 
(M. F. Paisley, private communication) and has been demonstrated in the inviscid 
calculations of Lamb (1992). Although the precise reasons for these large-amplitude 
oscillations in the lee-wave structure have not been fully delineated the essential 
mechanisms involved have been discussed via nonlinear analysis by Grimshaw & Yi 
(1991), and Hanazaki (1989~1, b) presented the first detailed numerical study of 
advancing upstream modes and their (sometimes) unsteady behaviour. 

Oscillatory behaviour can occur both with and without the presence of wave 
breaking - both cases have been seen during some of our previous experiments and 
have been found in our recent computations (to be separately reported). All the results 
to date suggest that oscillatory behaviour occurs most strongly when K is (roughly) in 
the upper half of each integer range - i.e. for 1.5 c K < 2, etc. The experimental 
evidence is that the oscillations can still have significant amplitude for K > 3 but it is 
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FIGURE 7 Sketch of likely flow regimes, for K sufficiently low to give the possibility 
of oscillatory behaviour (see text). 

not yet clear how rapidly the amplitude of such oscillations falls with increasing K (to 
K > 0(10), say), In figure 7 we indicate qualitatively all the probable flow regimes in 
the (4, a)-plot (cf. figure 5). If the obstacle blockage ( h / D )  is such that the unsteadiness 
is very weak or non-existent (for sufficiently large K, presumably) then the stippled 
regions on figure 7 will disappear. 

The sketch also includes the low-Froude-number vortex shedding regime ; it is well 
known that for low 4 (typically below about 0.3) the suppression of vertical motions 
can lead to large-scale vortex shedding in horizontal planes. This has been discussed in 
previous papers (Castro, Snyder & Marsh 1983; Castro 1987) and was also evident (but 
not studied) in the present work. In principle the regime must continue to (but not 
include) the a: = 00 two-dimensional limit, but it is not clearly seen in experiments for 
the widest three-dimensional hills because the shedding timescales are then of the same 
order as the tow time. The tank sidewall effects also become significant in such cases. 
It should be noted that we noticed wave breaking in at least one case where vortex 
shedding also occurred (the SM2 hill at & around 0.3) - hence the overlap of the two 
regimes in figure 7. However, the two processes may not always be simultaneous, so the 
sketch is somewhat tentative in this regard. 

In addition to being steady state, all theories to date are inviscid, so they cannot 
capture one of the major features often evident in experiments - separation at the 
surface under lee-wave crests and a resulting recirculation zone downstream of the hill. 
Our experiments (and probably earlier ones like those of Hunt & Snyder 1980) show 
that this separated zone can, in some circumstances, merge with the turbulent, fully 
mixed zone aloft, caused by wave breaking. This leads to a very deep well-mixed zone 
which extends all the way to the surface (e.g. figure 2c). Figure 8 shows the variations 
of Ha, the upstream height of the streamline that just surmounts the breaking zone, and 
d,, the height of the bottom of the wave-breaking region, as a function of F, for the 
SM3 and the COS3 hills. Merging does not occur for SM3, so that d, > 0 throughout 
the wave-breaking range - roughly 0.15 < F, < 0.65. However, for COS3 merging does 
occur - d, = 0 over a small range of F, near 0.6 - as indicated by the dashed line drawn 
through the data points. Note that in this case Ha also falls a little when merging 
occurs. 

A few of these cases of ‘merged’ flow appeared quite like the flow postulated by 
Smith (1985) in order to use (nonlinear) hydraulic ideas to determine the flow over the 
lee of the hill. Figure 9 shows two photographs from a tow of the COS4 hill at 
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FIGURE 8. Upstream height (ITo, solid symbols) of the streamline marking the top of the breaking 
zone, and the height (dm, open symbols) of the bottom of the breaking zone: triangles, SM3; squares, 
COS3. Lines added for clarity. The vertical wavy lines mark the limit of the breaking regimes. 

FIGURE 9. Photographs of the flow at two times (1)  in a tow of COS4 at 4 = 0.75. (a) t / T  = 0.44; 
(b) t /T  = 0.56. T is total tow time. 

4 = 0.75. The first (figure 9a), taken about halfway through the tow, shows a well- 
mixed region whose shape is very similar to the ‘ triangular wedge’ drawn by Smith 
(e.g. figure 1 of Smith 1985). However, this case was somewhat unsteady; figure 9(b), 
taken some seconds later, shows a clear separation between the breaking region and a 
surface separation zone. Nonetheless, Rottman & Smith (1989) concluded that these 
ideas do seem to lead to reasonable predictions of the height of the upstream streamline 
that marks the top of the well-mixed region. The present results provide further 
confirmation of this conclusion, whether or not merging occurs. Figure 10 shows the 
upstream height for cases SM3 and COS3, normalized by N and U and compared with 
the results obtained using hydraulic ideas - Smith’s (1985) theory as modified by 
Rottman & Smith (1989). The data display the same level of agreement as found by 
Rottman & Smith (their figure 6), despite the fact that, in the COS3 case, complete 
merging of the two well-mixed regions occurs for 4 around 0.6 and the merged region 
looks rather less like Smith’s wedge (see figure 2c, cf figure 9a). In Rottman & Smith’s 
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FIGURE 10. Normalized H,, compared with Smith’s theory (solid line). 0, SM3; 0, COS3. 

experiments merging must also have occurred, but they did not discuss the 
phenomenon. Note also that there are other aspects of the flow that the Smith (1985) 
theory does not capture very well (see Rottman & Smith 1989). 

Finally, we emphasize that linear theory predicts the lee-wave wavelengths very well, 
although this was not studied in great detail in the present work (but see Castro et al. 
1983, for example). Note that whenever Int(K) > 1 there is the possibility that a mode 
with mode number higher than the first (i.e. n > 1) will be amplified more by the 
topography than will the first mode (n = 1). Indeed, even linear theory (e.g. Janowitz 
1981, 1984; Wong & Kao 1970) suggests that the wave amplitude increases with 
wavenumber. This has been confirmed (in nonlinear cases) by both experiment (Castro 
& Snyder 1988) and numerical computation (Hanazaki 1989b), at least for the 
upstream-propagating modes. Presumably the same is true for the lee waves but this 
is difficult to check since the (stationary) lee waves of different mode number coexist 
and interact. A referee has suggested that the wave breaking at low 4 (corresponding 
to K > 3, say) is not essentially a mode-1 phenomenon, because higher-order modes 
have larger amplitudes. This may be correct but, even in these cases, the lee 
wavelengths in our experiments seemed always to be quite close to those given by linear 
theory for the first mode. We very rarely saw wave breaking at more than one height, 
although this would in principle be a possibility for Int(K) > 1. 

4. Conclusion 
It has been shown, firstly, that linear theory seriously overpredicts the 5 at which 

wave breaking first occurs, with the implication that non-hydrostatic or nonlinear effects 
generally act to restrict the range of wave breaking. For bodies sufficiently narrow in 
the cross-stream direction, wave breaking may not occur for any 5, contrary to some 
linear theory predictions. Secondly, the condition (in the lee of the obstacle) sometimes 
referred to as an internal hydraulic jump - e.g. Hunt & Snyder (1980) - seems to occur 
whenever the wave-breaking region aloft is sufficiently large to ‘merge’ with a 
separated (rotor) region near the surface. This leads to particularly strong downslope 
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winds and thence (presumably) to particularly high drag. The range of 5 over which 
wave breaking occurs is strongly dependent on the shape of the hill, but not primarily 
on the surface slope. Finally, it has been shown that for all obstacle shapes wave 
breaking is effectively suppressed at sufficiently small 4 - around 0.1-0.2 for wide hills. 
If wave breaking does begin at some F,, (with 4 falling), there is therefore always a 
lower critical F, at which it ceases. This end of the wave-breaking range does not seem 
to have been predicted theoretically, although it was noted in our earlier experiment 
(Castro 1987) and might be expected intuitively. 
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